

Detecting Insider Attacks in Blockchain Networks
Oluwaseyi Ajayi and Tarek Saadawi

Department of Electrical Engineering, City University of New York, City College

Oajayi000@citymail.cuny.edu saadawi@ccny.cuny.edu

Abstract— Blockchain technology has recently gained high

popularity in data security, primarily to mitigate against data

breach and manipulation. Since its inception in 2008, it has

been applied in different areas mainly to maintain data

integrity and consistency. Blockchain has been tailored to

secure data due to its data immutability and distributive

technology. Despite the high success rate in data security, the

inability to identify compromised insider nodes is one of the

significant problems encountered in blockchain architectures.

A Blockchain network is made up of nodes that initiate, verify

and validate transactions. If compromised, these nodes can

manipulate submitted transactions, inject fake transactions, or

retrieve unauthorized information that might eventually

compromise the stored data's integrity and consistency. This

paper proposes a novel method of detecting these compromised

blockchain nodes using a server-side authentication process

and thwart their activities before getting updated in the

blockchain ledger. In evaluating the proposed system, we

perform four common insider attacks, which fall under the

following three categories: (1)Those attacks targeting the

Blockchain to bring it down. (2) the attacks that attempt to inject

fake data into the database. (3) The attacks that attempt to hijack

or retrieve unauthorized data. We described how we implement

the attacks and how our architecture detects them before they

impact the network. Finally, we displayed the attack detection

time for each attack and compared our approach with other

existing methods.

Keywords — Blockchain, Cyberattack, Compromised nodes,

detection time, Intrusion Detection System, Transaction, data

injection.

I. INTRODUCTION

The tremendous rise in the number of computer networks
and IoT devices connected to the internet has increased their
attack surface. Despite multi-level security layers, malicious
intruders still find ways to subvert these protection systems
and gain access to unauthorized data [1]. Further researches
put forward intrusion detection systems (IDS) to identify
malicious intentions in computer networks and devices
connected to the internet [2,3]. Intrusion detection systems
proved to help identify malicious activities; however, their
single vantage point limits the ability to detect distributed or
coordinated cyberattacks. As a result of the single viewpoint,
some attacks can go undetected or not seen on time; hence,
IDS nodes need to exchange attack information for detecting
distributed attacks. A cooperative intrusion detection system
(CoIDS) was proposed to improve the detecting power of
single IDSs [4-6]. Companies adopted this solution because
of its better performance; however, significant problems
threatening the CoIDS are: (i) Data manipulation: Malicious
intruders can hack the database and alter the data being
exchanged even if it is not sent as plaintext. (ii) Data
deletion: Stored data can be deleted from the database by a
malicious insider or outsider if the activities are not
monitored. (iii) Fake data injection to the database: When
data manipulation is not readily achievable, a malicious

intruder can inject fake data into the database if hacked. (iv)
It might be challenging to guarantee the shared data's
consistency due to compromised media of exchange and (v)
a need to trust a third party that manages the database's
activities, making the network susceptible to a man-in-the-
middle attack.

Further research proposed blockchain architecture to

ensure the integrity of shared data in a collaborative

intrusion detection system. [7-11]. Blockchain technology

was introduced in 2008 as a technology behind bitcoin to

prevent double-spending in cryptocurrency[12]. Since its

inception, it has been applied to different areas such as, e.g.,

health system [13-15], data integrity security [16], as an

intrusion detection system [17 - 19], cooperative intrusion

detection [7,8], and so on. Blockchain is an append-only

public ledger that records all transactions that have occurred

in the network. Every participant in a blockchain network is

called nodes. The data in a blockchain is known as a

transaction, and it is divided into blocks. Each block is

dependent on the previous one (parent block). Every block

stores some metadata and hash value of the last block. So,

every block has a pointer to its parent block. Each

transaction in the public ledger is verified by the consensus

of most of the participants in the system. Once the

transaction block is attached, it is impossible to mutate/erase

the records [12]. Blockchain is broadly divided into two:

public and private Blockchain [20]. A public blockchain is a

permissionless blockchain in which all nodes do verification

and validation of transactions. e.g., Bitcoin, Ethereum. On

the other hand, private blockchains are permissioned

blockchains that limit network participation to specific

nodes. e.g., Hyperledger.

Blockchain technology proved effective in securing

stored data against cyberattacks; however, its inability to

identify and isolate a compromised blockchain node is one

of the major problems facing the technology. Many

blockchain applications in cybersecurity research focused on

securing the stored data against external attacks [9, 17-19,

21,22]. However, little effort has been put into detecting

internal attacks on stored data. a trust-chain among

blockchain nodes was proposed in [11]. Although the

solution has a good prospect in securing the integrity and

consistency of shared information, it may be challenging to

identify and isolate malicious nodes, especially in a private

blockchain network. Identifying a malicious insider node in

a blockchain network requires continuous monitoring of the

node's behavior and implementing a server-side node

authentication. Apart from monitoring the nodes' behavior,

the transactions submitted by every node should pass

through a verification process.

 This paper proposed a novel architecture that can

identify and thwart a compromised insider blockchain node's

malicious activities on transactions by continuously

examining the individual node's behavior. The proposed

architecture detects the malicious insider's activities on

stored attack information. We perform common insider

attacks, which fall under three categories: (1)Those attacks

targeting the Blockchain to bring it down. (2) the attacks

that attempt to inject fake data into the database and (3) The

attacks that attempt to hijack or retrieve unauthorized data.

The contributions of our work can be summarized as

follows:

• To propose a blockchain-based architecture that

can continuously monitor Blockchain nodes'

activities to detect malicious nodes.

• The proposed architecture can detect insider nodes

attempting to mount DoS attacks on the blockchain

network.

• The architecture can detect insider nodes that

attempt to inject fake data into the database or

retrieve unauthorized data.

• The proposed system can verify the integrity and

consistency of the submitted transaction (attack

features/signature) and present it in a standard

format, which encourages heterogeneous IDS node

participation.

• The architecture can permanently store the verified

transaction in a distributed public ledger and shares

it among IDS nodes in real-time.

This paper's remainder is organized as follows: Section

II discusses the background and related works on blockchain

application as IDS. Section III describes the proposed

architecture. Section IV presents the results, and finally,

section V presents the conclusions of this paper and possible

future works.

II. BACKGROUND AND RELATED WORKS

1. Blockchain as intrusion detection systems

The authors in [11] proposed the use of blockchain

technology in detecting compromised nodes. The authors
presented a trust-chain that mitigates attacks targeted at
compromising intrusion detection systems. The proposed
solution is to protect the integrity of the information shared
among the CIDN peers, enhance their accountability, and
secure their collaboration by thwarting insider attacks. A
consensus protocol is proposed for CIDNs as a combination
of proof-of-stake and proof-of-work protocols to enable
collaborative IDS nodes to maintain a reliable and tampered-
resistant trust chain. Their work focused on the theoretical
aspects of security, to study a series of attacks reported in
both domains (trust management and Blockchain), to fully
understand the impact of various parameter choices on the
proposed solution's security and the dynamics governing the
trust score evolution. Although the research work has a
reasonable prospect of ensuring shared information integrity,
the authors failed to address how the system will identify a
compromised node.

The authors in [9] present a Collaborative Blockchained

Signature-based Intrusion Detection (CBSigIDS).

CBSigIDS is a generic framework of collaborative

blockchain signature-IDS. This framework incrementally

utilizes blockchains to update a trusted signature database

for different IDS nodes in a collaborative network. The

experiment investigated the performance of CBSigIDS

against adversarial scenarios like worm and flooding attacks

in simulated collaborative intrusion detection systems or

networks (CIDN). In the evaluation, they compared the

results from simulated CIDN against real CIDN. The result

showed that blockchain technology could enhance the

robustness and effectiveness of signature-based IDSs under

adversarial scenarios via building a trusted signature

database. In [10], the authors proposed a SectNet, an

architecture that can secure data storing, computing, and

sharing in the large-scale Internet environment. The

architecture aimed at more secure cyberspace with actual

big data and enhanced AI with plenty of data sources. Their

architecture integrates 1) blockchain-based data sharing with

ownership guarantee, 2) AI-based secure computing

platform, and 3) a Trusted-value exchange platform. The

performance analysis evaluated the vulnerability when

suffering from notorious network attacks such as the

Distributed Denial of Service (DDoS) Attacks and revenue

for contributors who provide Blockchain's security rules.

The result showed that the SectNet significantly reduced

DDoS attack's impact due to the sharing of the security rule

sets by every internet user. The contributor's revenue will

also increase at a higher rate if the shared security rules are

of higher quality, especially after the actual market's quality

effect is formed. Based on the analysis, the work is specific

for DDoS attacks. Also, the authors failed to explain how

stored information is verified.

 In [17], the authors proposed a blockchain anomaly

detection solution (BAD) that focuses on detecting attacks

directed at the blockchain network. BAD prevents the

insertion of a malicious transaction from spreading further

in the Blockchain. BAD leverages blockchain metadata

named forks to collect potentially malicious activities in the

blockchain network. Their works used machine learning to

train blockchain nodes to detect malicious activities. In their

approach, they considered an eclipse attack (an attacker

infects a node's list of IP addresses, thus forcing the victim's

node list of IP addresses to be controlled by that attacker).

The result analysis showed that BAD could detect and stop

the spread of attack that uses bitcoin forks to spread

malicious codes. However, the solution is specific to attacks

directed towards the blockchain network and use bitcoin

forks. In another research put forward in [18], the authors

proposed collaborative IoT anomaly detection via

blockchain solution (CIoTA). CIoTA uses the blockchain

concept to perform distributed and collaborative anomaly

detection on IoT devices. They used CIoTA to continuously

trained anomaly detection models separately and then

combine their wisdom to differentiate between rare benign

events and malicious activities. The evaluation of the result

showed that combined models could detect malware

activities easily with zero false positives. The proposed

solution uses a collaborative effort of IoT to detect attacks;

hence, it does not address how a compromised IoT can be

identified.
The authors in [19] proposed a blockchain-based

malware detection solution in mobile devices. Their work
extracted installation package, permission package, and call
graph package features for all known malware families for
Android-based mobile devices and used them to build a
feature database. Their result showed that the solution could
detect and classify known malware. It also performs malice
determination and malware family classification on unknown
software with higher accuracy and lower time cost. The
solution above is specific to host-based malware attacks on
Android-based mobile devices. Hence, it will be difficult to
extend it to network-based attacks.

Despite several kinds of research, the available

implementations focused on protecting the shared data

against outside threats. In contrast, less attention is put into

detecting and isolating compromised insider threats. Our

proposed architecture detects and isolates compromised

insider nodes by continuously monitoring the nodes'

behaviors. Apart from this, the approach also detects

external threats. The above reason serves as the motivation

for this work and distinguishes our work from previous

related works.

III. METHODOLOGY

 The proposed architecture is implemented in the
laboratory on the Ethereum blockchain platform. Ethereum
blockchain is an open-source blockchain-based distributed
computing featuring a smart contract. A smart contract is a
self-executing contract that holds the terms of agreement
about a transaction, and it is written into lines of code. All
participants run the code and the smart contract in a
distributed, decentralized blockchain network. The smart
contract automatically executes when predetermined
conditions are met [23]. Although the central Ethereum
platform is a public blockchain, we run it as a private
network in which no public nodes can join the Blockchain.
We configure the private Blockchain by building a custom
genesis block and NetworkID for the Ethereum blockchain
platform. Fig. 1 shows a pictorial representation of the
private Blockchain.

Fig. 1. The private Blockchain

The proposed architecture detects malicious activities of the

blockchain nodes based on the node's heuristic analysis. The

architecture's building block is divided into three stages, as

shown in Fig. 2

Fig. 2. Building blocks of the proposed architecture

1. Transaction Preparations

In our previous works [7,8,13], we described how a

transaction is prepared and submitted to a blockchain

network. Unlike our previous works, we implement the

proposed blockchain network as a private network where all

nodes can submit transactions. The submitted transaction

follows an agreed-upon format written in the smart contract.

As part of the action, we configure owners to submit

transaction tags containing the node's transaction account

alongside the transaction. The structure of the submitted

transaction is shown in Table I.

Table I: Transaction format

Transaction Tag

Signed

Features/Signature

Trans_acc: 0x

8b695D0D7160aA8d95dc6ccEf6E7133F76a91De7

2. Verification

i. Node Authentication

The smart contract handles the node authentication.

The purpose of authenticating the node is to ensure that

only specific nodes can submit and retrieve the

information. We implement this type of policy to

evaluate transaction access control in the consortium

network. Authenticating a node requires that the smart

contract retrieves the transaction tag and invokes a code

that compares it with stored information. The

information verified at this stage includes the

transaction account and digital signature. The

pseudocode below describes the snippet of the smart

contract that handles the verification of the node. If the

node authentication is successful, the algorithm invokes

the transaction verification code.

ii. Transaction verification

The transaction verification step ensures that all

malicious transactions or activities on the submitted

transaction by insider nodes are identified and thwarted.

(i.e., it detects malicious activities and identifies the

compromised node). The verification also ensures that

any submitted transaction's integrity and consistency are

verified before attaching it to the blockchain network. In

this architecture, the smart contract behaves like a

firewall that analyzes every ingress traffic to the

blockchain network. We defined the maximum cost of

mining a transaction since transactions are submitted in a

similar format, making their mining prices almost

identical. The essence of limiting the fee is to ensure that

a submitted transaction is consistent with the defined

transaction format and does not exhaust the resources.

Any transaction costs higher than the threshold are

flagged and results in a failed transaction. To minimize

the influence of a compromised node in the mining

process, we defined who should mine a transaction

block. Here, we set a mining policy that alerts when

transaction owners attempt to mine their transactions.

The smart contract keeps monitoring the cost of mining

each transaction and all nodes participating in mining a

transaction.

Furthermore, we defined the format for submitted

transactions and the maximum number of transactions

per node in one second. As explained in [7,8,13], the

structure of the submitted transaction is shown in Table

I. We generate the key pairs for all nodes using Digital

Signature Algorithm (DSA) with 512 bit-length. The

public key of all nodes is written in the smart contract,

while the private key is kept securely within the nodes.

Every node signs the transaction with the private key,

and it is verified using the public key when the

transaction is submitted to the Blockchain. We also

defined a transaction retrieval policy that restricts the

retrieval of transactions to specific nodes. We randomly

defined a privileged node list that stores the information

of retriever nodes.

The purpose is to establish transaction retrieval

access control in the blockchain network. A snippet from

a smart contract shows algorithm 2 pseudocode

describing the transaction verification process. The

upper part of the code presents the submitted transaction

verification algorithm. For transaction verification to be

successful, the transaction must agree with the format,

and the owner must not mine its transaction. Also, the

cost of mining transactions must not exceed the

threshold, and the number of transactions per second

must not exceed the threshold value. If any of these

conditions fail, the transaction is dropped, and other

nodes are alerted about the malicious node's attempt.

The lower part of algorithm 2 describes the condition for

a transaction to be retrieved. To retrieve a transaction,

the requester submits its information to the blockchain

network. The smart contract invokes a privileged

verification code. If successful, access is allowed; else,

access denied

3. Transaction validation

Blockchain protocol handles the validation of

transactions. In this work, the blockchain platform uses both

Proof-of-Work (PoW) and Proof-of-Stake (PoS). The

pending transaction is built into a block, and the block is

broadcasted into the blockchain network for validation.

Every node receives a broadcasted block, and they work to

validate the block. We set an upper bound of stake for every

transaction to ensure fair competition among miners (i.e., to

discourage nodes with a more significant stake from always

emerge as the miner). Each block contains a unique code

called hash; it also includes a hash of the previous block.

Data of earlier blocks are encrypted or hashed into a series

Algorithm2: Transaction Verification

Procedure: Transaction Verification (Transaction)

Inputs: Transaction

// This is invoked for a submitted transaction

If (Transaction agrees with Format) and

 (Transaction owner does not mine) and

 (Transaction cost < Max cost) and

(Transactions/sec <= Max):

Return Success

Push transaction to the validation stage

else:

Return fail

 Drop transaction

end if

// This is invoked for a retrieved transaction

 Requester invokes a privileged code

 if (Requester == a privileged node)

 verify information

 allow access

else:

 disallow access

 alert other nodes

end if

end procedure

Algorithm1: Node Authentication

Procedure: Node Authentication (Key, Information)

Inputs: Key, node Information (NI)

If (Node information is Correct) and (public key

 verifies private key):

Return Success

Push transaction for verification

else:

Return fail

 Drop transaction

end if

end procedure

of numbers and letters. The nodes work to get the target

hash to validate a block. A target hash is a number that a

hashed block header must be less than or equal to for a new

block to be awarded. The miners achieve this target hash by

using an iterative process such as PoW, which requires

consensus from all nodes. The characteristics of PoW are

computationally difficult to compute and easy to verify.

The process of guessing the hash starts in the block

header. It contains a block version number, a timestamp, the

hash used in the previous block, the hash of the Merkle

Root, the nonce, and the target hash. Successfully mining a

block requires a node to be the first to guess the nonce,

which is a random string of numbers and broadcast to other

nodes. Other nodes verify the nonce value's correctness by

appending this number to the block's hashed contents and

then rehashing it. If the new hash meets the target's

requirements, then the block is added to the Blockchain.

The Blockchain permanently stores the transaction, and it is

impossible to mutate/erase the block.

4. Distributed Ledger

The newly added block reflects on the ledger, which is

possessed by every node in the network. The nodes receive

the update of the recently added block but can not access the

block's content. Smart contract handles the node's access to

the block's content (algorithm 2).

IV. RESULT

The proposed architecture is implemented on an Ethereum

blockchain platform. We use Solidity v 0.7.2 implementation

for smart contracts and geth v 1.9.0 for Ethereum. For initial

testing of the proof-of-concept, the private blockchain

network is set up in the laboratory with five computers

serving as blockchain nodes (Fig. 1) to evaluate the

detection performance. We also measure the detection time

of each attack and present the result in Fig.3. Table II shows

the comparison of the proposed approach with other related

solutions in the literature

A. Attack launching and detection

Here, we considered some of the everyday malicious

activities of blockchain nodes. The implementation and

detection of the attacks are described in this section. The

attacks are divided into three categories (1)Those attacks

targeting the Blockchain to bring it down (DoS), (2) the

attacks that attempt to inject fake data into the database, (3)

The attacks that attempt to hijack or retrieve unauthorized

transaction.

1. Denial of Service Attacks

a) A large volume of data:

We implement a case where a compromised node

sends a large amount of what appears to be legitimate

standard formatted transactions in an attempt to mount a

DoS attack on the blockchain network. The purpose of

this attack is to exhaust all the gas prices so that when

legitimate transactions are submitted, the will not be

enough gas to mine the transaction. Node prepares

transactions that are a massive amount of data and

submit it to the blockchain network. Although other

nodes are working to validate the transaction, we

observed that the transactions are not mined.

Notification to the owner indicates that the transaction

failed due to its cost. We investigated further by

manually generating the transaction address and then

using it to query the Blockchain. The blockchain

network did not return any transaction because no block

with that transaction address resides in the network.

When we check the transaction's metadata, we observed

that the transaction's mining cost is greater than the

smart contract threshold, hence the failed notification.

b) Multiple submitted transactions

 We implement another case where a compromised

blockchain node sends multiple versions of what appears

to be a legitimate standard formatted transaction to

mount a DoS attack on the blockchain network. The aim

to overwhelm the smart contract so that some

transactions can get validated without verification. The

node persistently submits multiple transactions to

exhaust computing resources. Although other nodes

attempt the transaction's mining process, we observed

that the transactions are not validated because the

frequency of receiving the same or similar transaction

from the same node exceeds the smart contract

threshold. We persistently submit the same request from

the same node, and we observed that the miners stop

mining after the sender was flagged to be compromised.

The smart contract automatically drops all subsequent

transactions from the same authorized node.

2. Database Injection Attempt

a) Fake Transaction values

We implement a case where a compromised node

submits what appears to be legitimate standard formatted

attack features but with fake data values. The cost of

each submitted transaction is within the set range in the

smart contract. Generally, it is assumed that an attacker

will not hold an authorized node in a compromised state

for too long due to network administrators' frequent

security checks. Based on this assumption, an attacker

makes all efforts to get its transactions validated to the

Blockchain as quickly as possible. The transaction

owner attempts to mine the transaction to get it validated

as fast as possible. The result showed that the transaction

is not mined, although other authorized nodes are mining

to validate the same transaction. The smart contract

drops the transaction because the owner attempts to mine

his transaction, making the transaction flagged as

compromised. Information about the owner is sent to the

network operator.

3. Transaction Retrieval Attempt

a) Unauthorized request of transaction:

We implement a situation where a node attempts to

retrieve an unauthorized transaction. We implement this

malicious activity to demonstrate how the proposed

architecture can control transaction retrieval access. The

node queries the Blockchain for the content of a newly

added block in which it is not privileged to download.

The result showed that no information was returned

because the node is not privileged to retrieve the data.

The smart contract handles each transaction's access

control based on the access level submitted with the

transaction. We investigate further by querying the

Blockchain using a node that has access to retrieve the

data. The node successfully downloads the block's

content from the Blockchain.

B. Performances Analysis

a. Detection time

We evaluated the detection time of attacks. The

detection is defined as the time it takes for the architecture

to notify about the transaction's failure. This time is

measured from when the transaction is submitted to the time

the notification is received. Both the submission and

notification are timestamped and recorded for each attack.

The detection time is the difference between these two

times. Fig.3 shows the difference in the detection time for

the attacks under consideration. We observed that the time

taken to detect a DoS attack with multiple transactions is the

highest. The higher time is because we delayed the smart

contract to count the number of transactions per second

before sending the failure notification. Finally, we carry out

a comparative study of our approach with solutions from

other similar works (Table II). The result shows a clear

distinction between our work and other related works.

Fig. 3. Detection Time of attacks under consideration

Table II: Performance comparison with other approaches

Properties Trust-

chain

[11]

CBSigI

DS

[9]

SectNet

[10]

BAD

[17]

Our

Method

Data Sharing ✓ ✓ ✓ x ✓

Blockchain ✓ ✓ ✓ ✓ ✓

Detect
External

Node

x ✓ ✓ x ✓

Detect
Insider Node

✓ x x x ✓

Compatible
with

different IDS

x ✓ x x ✓

Smart

Contract
verification

x x x x ✓

V. CONCLUSION

In this paper, we proposed a novel architecture that can

identify and thwarts the malicious activities of a

compromised insider blockchain node by continuously

examining the individual node's behavior. In the proof-of-

concept, we set up a private blockchain network in the lab

and describe how the smart contract performs the

authentication and detection of malicious nodes. We

evaluated the performance under the following three

categories of attacks: (a)Those attacks targeting the

Blockchain to bring it down (b) the attacks that attempt to

inject fake data into the database (c) The attacks that

attempt to hijack or retrieve unauthorized data. We further

evaluate the performance of the architecture by observing

the attack detection time. The result shows that the proposed

architecture has a reasonable prospect of detecting and

isolating typical insider malicious activities.

REFERENCES

[1] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas,
"Modeling intrusion detection system using hybrid intelligent
systems," Journal of network and computer applications, vol. 30, no.
1, pp. 114–132, 2007.

[2] O. Igbe, O. Ajayi, and T. Saadawi, "Denial of Service Attack
Detection using Dendritic Cell Algorithm" 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON 2017) Oct 19th – 21st 2017, Columbia
University, New York, USA.

[3] O. Igbe, O. Ajayi, and T. Saadawi, "Detecting Denial of Service
attacks using a combination of Dendritic Cell Algorithm(DCA) and
Negative Selection Algorithm(NSA)" 2nd International Conference
on Smart Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York,
USA.

[4] Y. L. Dong, J. Qian, M. L. Shi, "A cooperative intrusion detection
system based on autonomous agents," IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[5] C. C. Lo, C. Huang, J. Ku, A cooperative intrusion detection system
framework for cloud computing networks, in: In: Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[6] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, "Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS," in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234–244.

[7] O. Ajayi, M. Cherian and T. Saadawi, "Secured Cyber-Attack
Signatures Distribution using Blockchain Technology." 2019 IEEE
International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), New York, NY, USA, 2019, pp. 482-
488.

[8] O. Ajayi and T. Saadawi, "Blockchain-Based Architecture for
Secured Cyber-Attack Features Exchange," 2020 7th IEEE
International Conference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom), New York, NY, USA,
2020, pp. 100-107, doi: 10.1109/CSCloud-
EdgeCom49738.2020.00025.

[9] S. Tug, W. Meng and Y. Wang, "CBSigIDS: Towards Collaborative
Blockchained Signature-Based Intrusion Detection," 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), Halifax, NS, Canada, 2018, pp. 1228-1235, doi:
10.1109/Cybermatics_2018.2018.00217.

[10] K. Wang, J. Dong, Y. Wang and H. Yin, "Securing Data With
Blockchain and AI," in IEEE Access, vol. 7, pp. 77981-77989, 2019,
doi: 10.1109/ACCESS.2019.2921555.

[11] N. Kolokotronis, S. Brotsis, G. Germanos, C. Vassilakis and S.
Shiaeles, "On Blockchain Architectures for Trust-Based Collaborative
Intrusion Detection," 2019 IEEE World Congress on Services

(SERVICES), Milan, Italy, 2019, pp. 21-28, doi:
10.1109/SERVICES.2019.00019.

[12] S. Nakamoto, "Bitcoin: a peer-to-peer electronic cash system.", 2008

[13] O. Ajayi, M. Abouali and T. Saadawi, "Secure Architecture for Inter-
Healthcare Electronic Health Records Exchange," 2020 IEEE
International IOT, Electronics and Mechatronics Conference
(IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-6, doi:
10.1109/IEMTRONICS51293.2020.9216336.

[14] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.
"Blockchain Technology Innovation". 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

[15] Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating Blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017.

[16] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky,
L.: Ensuring data integrity using Blockchain technology. In:
Proceeding of the 20th Conference of fruct Association ISSN 2305-
7254 IEEE (2017)

[17] M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, "BAD: a
Blockchain Anomaly Detection solution" arXiv:1807.03833v2, [cs.
CR] 12 jul 2018

[18] T. Golomb, Y. Mirsky and Y. Elovici "CIoTA: Collaborative IoT
Anomaly Detection via Blockchain" arXiv:1803.03807v2, [cs. CY]
09 Apr 2018

[19] Gu, J, B Sun, X Du, J Wang, Y Zhuang and Z Wang (2018).
Consortium blockchain-based malware detection in mobile devices.
IEEE Access, 6, 12118–12128

[20] Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain
based approach to enhance big data authentication in distributed
environment. In Ubiquitous and future networks (icufn), 2017 ninth
international conference on (pp. 887–892).

[21] M. Kumar and A. K. Singh, "Distributed Intrusion Detection System
using Blockchain and Cloud Computing Infrastructure," 2020 4th
International Conference on Trends in Electronics and Informatics
(ICOEI)(48184), Tirunelveli, India, 2020, pp. 248-252, doi:
10.1109/ICOEI48184.2020.9142954.

[22] B. Jia and Y. Liang, "Anti-D chain: A lightweight DDoS attack
detection scheme based on heterogeneous ensemble learning in
blockchain," in China Communications, vol. 17, no. 9, pp. 11-24,
Sept. 2020, doi: 10.23919/JCC.2020.09.002.

[23] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph
Holz, An Binh Tran, and Paul Rimba. 2017. On Availability for
Blockchain-Based Systems. In SRDS'17: IEEE International
Symposium on Reliable Distributed Systems

